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Spontaneous symmetry breaking (SSB) is one of the basic aspects of collective
phenomena such as phase transitions in statistical mechanics or ground-state
excitations in field theory. In general, spectral analysis of SSB is related to the
presence of a Goldstone boson particle. The explicit construction of the canoni-
cal variables (boson field operator and its adjoint) of this boson has so far been
an open problem. In this paper, we consider the SSB of Bose�Einstein conden-
sation in two models: the so-called imperfect or mean field Bose gas (which is
nothing but a perfect ideal Bose gas including the property of equivalence of
ensembles), and the Bogoliubov weakly interacting Bose gas. For both we con-
struct explicitly the Goldstone boson field variables. The remarkable result is
that in both cases the field and its adjoint field are formed as the ``fluctuation
operators'' respectively of the order parameter operator and of the generator of
the broken symmetry. The notion of ``fluctuation operator'' is essential for our
mathematical construction. We find that although the order parameter has a
critical fluctuation, the generator of the broken symmetry has a squeezed fluc-
tuation of the same inverse rate. Furthermore, we prove that this canonical pair
of variables decouples from the other variables of the system, and that these
fluctuations behave dynamically as long-wavelength sound waves or as
oscillator variables.

KEY WORDS: Spontaneous symmetry breaking; Goldstone theorem; nor-
mal coordinates; interacting Bose gases; Bose�Einstein condensation; quantum
fluctuations.

1. INTRODUCTION

The phenomenon of spontaneous symmetry breaking (SSB) is a represen-
tative tool for the explanation of many phenomena in modern physics of
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field theory and statistical mechanics. The study of SSB goes back to the
Goldstone Theorem, (1) which has been the subject of much analysis. It is
proved that for short range interactions in many-body systems SSB implies
the absence of an energy gap in the excitation spectrum.(2, 3)

For long range interactions the SSB has also been studied extensively.
In the physics literature the phenomenon is known as the occurrence of
oscillations with frequency spectrum taking a finite value |{0 at k=0.(4�6)

Different approximation methods, typical here is the random phase
approximation, yield the exact computation of these frequencies. For some
mean field models, the BCS-model, (7) the Overhauser model, (8) the anhar-
monic crystal model, (9) and for the jellium model, (10) we were able to give
the mathematical status of these frequencies as elements of the spectrum of
typical fluctuation operators (see refs. 11 and 12).

The typical operators entering in the discussion are the generator of
the broken symmetry and the order parameter. In physical terms expressed,
they are the charge or density operator and the current operator. Their
fluctuation operators form a quantum canonical pair, which decouples
from the other degrees of freedom of the system. As fluctuation operators
are collective operators, they describe the collective mode accompanying
the SSB phenomenon. Hence for long range interacting systems, we
realised mathematically rigorously in these models, the so-called Anderson
theorem(13, 14) of ``restoration of symmetry,'' stating that there exists a spec-
trum of collective modes |(k � 0){0 and that the mode in the limit k � 0
is the operator which connects the set of degenerate temperature states, i.e.,
``rotates'' one ergodic state into an other. We conjecture that our results
of refs. 7, 8, and 10 can be proved for general long range two-body interac-
ting systems as a universal theorem. Anderson did formulate his theorem
in the context of the Goldstone theorem for short range interacting
systems, i.e., in the case |(k � 0)=0 of absence of an energy gap in the
ground state.

Of course one knows that there is no one-to-one relation between
short range interactions and the absence of an energy gap for symmetry
breaking systems (see, e.g., ref. 9). The imperfect Bose gas is an example of
a long range interacting system showing SSB, but without energy gap.
In this paper we realise the above described program of construction of the
collective modes operators of condensate density and condensate current,
as normal modes dynamically independent from the other degrees of
freedom of the system. We consider the whole temperature range, the
ground state included.

In particular the ground state situation is interesting, because it yields
a nontrivial quantum mechanical canonical pair of conjugate operators,
giving an explicit representation of the field variables of the so-called
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Goldstone bosom. One can consider this result as a formal step forward
beyond the known analysis of the Goldstone phenomenon.

Moreover in Section 4, we extend this result to the Bogoliubov weakly
interacting Bose gas of superfluidity. It is interesting to remark that here
the situation is intrinsically different in the sense that only the condensate
density mode is spontaneously broken. One checks explicitly that the den-
sity fluctuation operator and the order parameter fluctuation operator do
not form a non-trivial pair, but the condensate density and the order
parameter fluctuation operators do. Hence in both models, exactly the fluc-
tuation operators of the generator of the broken symmetry and of the order
parameter form a non-trivial canonical pair. The latter one shows off-
diagonal long range order, therefore the density�density correlation can
not share this property. This can be interpreted as that a spontaneously
broken symmetry behaves like an approximate symmetry. The explicit con-
struction of the canonical pair amounts to the realisation of ``restoration of
symmetry,'' an idea put forward by Anderson.(13, 14) Furthermore, for both
models, we prove that the canonical pair of Goldstone fluctuation modes
decouples dynamically from the other variables of the system and behaves
like harmonic oscillator modes with a frequency proportional to the con-
densate density, i.e., this phenomenon disappears if no condensation is pre-
sent. It turns out that this pair of variables has a timescale in the long
wavelength limit which is determined by the long wavelength behaviour of
the spectrum of the system.

2. FLUCTUATION OPERATORS

We want to study different models of a Bose gas in which there is
breaking of the gauge symmetry. In general, a system of identical bosons
of mass m in a cubic box 4/R& of volume V=L&, &�3 with periodic
boundary conditions for the wave functions, is described by the full two-
body interaction Hamiltonian

HL=TL+UL&+LNL

=:
k

=k a*L, k aL, k+
1

2V
:

q, k, k$

v(q) a*L, k+qa*L, k$&qaL, k$aL, k&+LNL (1)

where the sum runs over the set 4*=(2?�L) Z& and =k=|k| 2�2m; a>
L, k are

the boson creation�annihilation operators in the one-particle state �L, k(x)
=V &1�2eik } x, x # 4, k # 4*, i.e.,
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aL, k=|
4

a(x)
e&ik } x

V 1�2 dx
(2)

[a(x), a*( y)]=$(x& y)

and v(q)=�R& e&iq } x,(x) dx, , is the periodically extended two-body inter-
action potential.

The generator of the gauge symmetry is the total number operator NL ,
with generator density a*(x) a(x):

NL=|
4

a*(x) a(x) dx

The common choice of order parameter is V &1�2a>
L, 0 , or taking a self-

adjoint combination

AL=
i

- 2V
(a*L, 0&aL, 0)=

i

- 2 V |
4

(a*(x)&a(x)) dx

Hence the order parameter density is given by (i�- 2V )(a*(x)&a(x)). One
has of course:

[NL , AL]=
i

- 2V
(a*L, 0+aL, 0) ww�V � � i - 2\0 cos :

where \0 is the density of the condensate and : the phase, i.e.,

V &1�2a*L, 0 � - \0 ei:

We are here interested in the behaviour of the q-mode fluctuation
(q{0) (15) of this generator and of the order parameter, i.e.,

FL, q(N )=
1

V 1�2 |
4

a*(x) a(x) eiq } x dx (3)

FL, q(A)=
1

- 2 V 1�2 |
4

(a*(x)&a(x)) eiq } x dx (4)

which satisfy the same commutation relation as NL and AL :

[FL, q(N ), FL, &q(A)]=
i

- 2V
(a*L, 0+aL, 0) ww�V � � i - 2\0 cos : (5)
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In fact we take a sequence 0{qL # 4* converging to q so that there is no
need to subtract expectation values, since for q # 4*, �4 eiq } x=V$q, 0 , and
so that we can also write

FL, q(N )=
1

V 1�2 :
k

a*L, k+qaL, k (6)

FL, q(A)=
i

- 2
(a*L, q&aL, &q) (7)

Our first goal will be to define these operators in the thermodynamic limit
L � �. This will be done via a central limit theorem, as defined in refs. 11
and 12. Afterwards we will be interested in the long wavelength��low fre-
quency limit q � 0 in which collective behaviour is to be expected. In this
limit q � 0 we give a connection with the abstractly studied fluctuation
operators(16) of the type

F $(O)= lim
L � �

F $
L(O)=

1
V 1�2+$ |

4
(O(x)&(O(x)) ) dx (8)

where O is some operator density and $ a critical exponent describing the
degree of abnormality of the fluctuations of O, defined by the existence of
the variance. If $>0 there is ODLRO, if $<0, the fluctuation is squeezed.

In an interacting Bose gas this q � 0 behaviour will be mainly deter-
mined by the spectrum Eq of the Hamiltonian. The density fluctuation
FL, q(N ) has another very important property, its commutator with the
two-body interaction part of the Hamiltonian vanishes:

[UL , FL, q(N )]=0 (9)

where

UL=
1

2V
:

q, k, k$

v(q) a*L, k+qa*L, k$&q aL, k$aL, k

This is easily seen as follows. Commute in UL , a*L, k$&q with aL, k . This gives

UL=
1

2V
:

q, k, k$

v(q) a*L, k+q aL, k a*L, k$&qaL, k$&
1

2V
:
q, k

v(q) a*L, k+qaL, k+q
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In the first term, separate the term q=0 from the rest, use translation
invariance in the second term, and observe that UL can then be written as

UL=
1
2

:
q{0

v(q) FL, q(N ) FL, &q(N )+
v(0)
2V

N 2
L&

1
2

,(0) NL (10)

From this expression, (9) is obvious.
In physics, one encounters essentially two types of Bose condensed

systems, namely those with a quadratic excitation spectrum (Eq B |q|2, |q|
small) and those with a superfluid, linear spectrum (Eq B |q|, |q| small).
We will treat in detail an example of each of these cases.

3. THE IMPERFECT BOSE GAS

3.1. The Model and Equilibrium States

To make things more concrete, we consider as a first example the
imperfect or mean field Bose gas, (17, 18) specified by the local Hamiltonian
HL with periodic boundary conditions:(19)

HL=TL&+LNL+
*

2V
N 2

L (11)

where * # R+, 4 the centered cubic box of side length L in R&, &�3,
4*=(2?�L) Z&. Remark that, apart from a shift in the chemical potential
this Hamiltonian can be obtained from (1) by taking v(q)=0 if q{0
in (10).

Talking about the thermodynamic limit, we mean L � � under the
constraint that for all L

|L(NL)
V

=\ (12)

where \ is any positive number standing for the average density of particles,
|L is the canonical Gibbs state for (11) at some inverse temperature ;. It
is proved(19) that |;( } )=limL |L( } ) exists as a space homogeneous state
on the algebra of polynomials in the creation and annihilation operators.
It is proved that there exists condensation in the zero (k=0) mode state
if \ is large enough and T is small enough. The phase transition is accom-
panied by a spontaneous breaking of the gauge symmetry (see also ref. 20).

The limit chemical potential +=limL +L is given by

+=*\ (13)
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and the dynamics coincides with the dynamics of the free Bose gas. The
limit Gibbs state has the following form: for all local observables A,

|;(A)=
1

2? |
2?

0
|:

;(A) d: (14)

with

|:
;[ei(a( f )+a*( f )))=exp[&1

2 ( f, Kf )+2i\1�2
0 | f� (0)| cos :] (15)

and

(Kf@)(k)=
1
2

coth \;=k

2 + f� (k) (16)

The states |:
;(: # [0, 2?]) are the extremal equilibrium state components

of |; with the property that

lim
L � �

|:
; \a*L, 0

V 1�2+=- \0 ei: (17)

and as operators in the GNS-representation of |:
; , one has also

lim
L � �

a*L, 0

V 1�2=- \0 ei: (18)

Remark also that the states |:
;(: # [0, 2?]) are quasi-free states, making

the computation of expectation values straightforward.

3.2. Collective Goldstone Modes

We now turn our attention to the density and order parameter fluc-
tuations. We consider our system to be in one of the extremal equilibrium
states |:

; , for some : # [0, 2?], and without loss of generality, we take
:=0, and denote this state again by |; .

For notational convenience, if \0{0, denote

\L, q=
1

- 2\0

FL, q(N ), AL, q=FL, q(A)
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Then we have

[\L, q , AL, &q]=
i

2 - \0V
(a*L, 0+aL, 0)

and by (18):

lim
L � �

[\L, q , AL, &q]=i (19)

More generally

lim
L � �

[\L, q , AL, &q$]=i$q, q$ (20)

Let us first calculate the variances of \L, q and AL, q .

Proposition 1. We have for q{0:

(i)

lim
L � �

|;(\L, q\L, &q)=
1
2

coth
;=q

2
+

1
2\0

|
R&

dk
(2?)&

1
e;=k+q&1

1
1&e&;=k

(ii)

lim
L � �

|;(AL, qAL, &q)=
1
2

coth
;=q

2

Proof. The proof is a straightforward calculation using the quasi-
freeness of the state |; , e.g.,

|;(\L, q\L, &q)

=
1

2\0V
:

k, k$

|;(a*L, k+qaL, k a*L, k$&qaL, k$)

=
1

2\0V
:
k

|;(a*L, k+qaL, k+q) |;(aL, ka*L, k)

=
1

2\0V
(|;(a*L, qaL, q) |;(aL, 0a*L, 0)+|;(a*L, 0aL, 0) |;(aL, &qa*L, &q))

+
1

2\0V
:

&q{k{0

|;(a*L, k+q aL, k+q) |;(aL, k a*L, k)
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In the limit, this becomes

lim
L � �

|;(\L, q\L, &q)=
1
2

coth
;=q

2
+

1
2\0

|
R&

dk
(2?)&

1
e;=k+q&1

1
1&e&;=k

The other case is even easier. K

From this already a few conclusions can be drawn. First of all,
consider the integral in the most relevant case &=3:

1
2\0

|
R3

dk
(2?)3

1
e;=k+q&1

1
1&e&;=k

Letting q � 0, this integral clearly diverges due to the contribution of the
neighbourhood of k=0. Near k=0 we can write it (up to constants) like

|
dk

(2?)3

1
(k+q)2 k2

Taking q, e.g., along the z-axis and changing the variable k to k$=k�|q|, it
can be seen that this integral diverges like |q|&1. Since coth(;=q �2) diverges
as |q|&2 for q � 0, we see that for small q the variance of \L, q is completely
dominated by the coth-term.

This divergence implies that we should renormalise both \L, q and AL, q

in order to get a nontrivial limit q � 0 of their variances, i.e.,

\L, q � \~ L, q=|q| \L, q

AL, q � A� L, q=|q| AL, q

But this implies that the commutator

lim
L � �

[\~ L, q , A� L, &q]=i |q| 2

vanishes in the limit q � 0.
On the other hand, if one considers the ground state situation (limit

; � �), the q � 0 analysis yields that the variances

lim
q � 0

|�(\L, q\L, &q) and lim
q � 0

|�(AL, q AL, &q)

are both finite, and the commutation relation between \L, q and AL, &q is
nontrivial and canonical.

1133Goldstone Boson Normal Coordinates in Interacting Bose Gases



This is not surprising, as one expects true quantum effects on the level
of fluctuations only in the ground state. Critical quantum effects are hidden
behind the temperature (T>0) fluctuations.

Moreover, it is tempting to identify this renormalization in q with the
exponent $ of (8) via the relation |q| B L&1. This relation of course being
given by the fact that the first non-zero q-level in finite volume is
|q|=2?L&1. In that case we obtain for the density fluctuations FL, q(N )
that $=1�3 in the condensed phase. In the normal phase, the coth-term
would be absent and the integral would be convergent also for q=0
because e;=k would be replaced by e;(=k&:), with :<0, hence $=0. At the
critical point, the coth-term would still be absent but the integral would
now be divergent like |q|&1 as shown before. This would then give $=1�6.
These three values for $ are exactly the ones calculated in ref. 21.

Since we will be interested in quantum effects on the level of macro-
scopic fluctuations we will restrict ourself from now on to the ground state
(from now on denoted |). We redefine \L, q and AL, q as self-adjoint
operators, and we make the (arbitrary) choice of taking the ``cos-fluctua-
tion'':

\L, q=
1

- \0V |
4

a*(x) a(x) cos(q } x) dx (21)

AL, q=
i

- V |
4

(a*(x)&a(x)) cos(q } x) dx (22)

or in momentum space

\L, q=
1

2 - \0 V
:
k

(a*L, k+qaL, k+a*L, k&qaL, k) (23)

AL, q=
i
2

[a*L, q+a*L, &q&(aL, q+aL, &q)] (24)

where the normalization is chosen such that

lim
L � �

[\L, q , AL, q$]=i$q, q$ (25)

It is easy to check that with these definitions

lim
L � �

|(\2
L, q)= lim

L � �
|(A2

L, q)= 1
2 (26)
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The rest of this section is devoted to the more mathematical aspects of the
realisation of the different fluctuation operators as central limits of
operators. The less mathematics minded reader can skip this part at a first
reading and proceed immediately to Section 3.3.

Let F be the family of complex continuous functions f (k, k$) of two
variables k, k$ # R&, satisfying

f (\k, \k$)= f (k, k$) (27)

and

f (k, k$)= f (k$, k) (28)

With later applications in mind, define for f, g # F, \L, q( f ) and AL, q(g) by

\L, q( f )=
1

2 - \0 V
:
k

[ f (k+q, k) a*L, k+qaL, k

+ f (k&q, k) a*L, k&qaL, k] (29)

AL, q(g)=
i
2

[ g(q, 0)(a*L, q+a*L, &q)& g(0, q)(aL, q+aL, &q)] (30)

Condition (28) ensures the self-adjointness of these operators. Then define
operators FL, q( f, g) by

FL, q( f, g)=\L, q( f )+AL, q(g) (31)

Proposition 2. For f, g # F,

lim
L � �

|(FL, q( f, g)2)= 1
2 | f (q, 0)+ig(q, 0)|2 (32)

Proof. This is a simple calculation using the quasi-freeness of the
state |. K

In the GNS-representation (H| , ?| , 0|) of the state | a scalar
product is defined by

(?|(A) 0| , ?|(B) 0|) |=|(A*B)

and the associated norm is denoted by & }&| .
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Denoting ?|(FL, q( f, g)) again by FL, q( f, g) we then have:

Proposition 3 (A BCH-formula). Let fi , gi # F, i=1, 2, then

lim
L � �

&eiFL, q( f1 , g1)eiFL, q ( f2 , g2)&ei(FL, q ( f1 , g1)+FL, q ( f2 , g2))

_e&1�2[FL, q ( f1 , g1), FL, q ( f2 , g2)]&| (33)

Proof. See Appendix A. K

This result should be compared with the Baker�Campbell�Haussdorff
formula which states that for two operators A, B whose commutator is a
complex number:

eAeB=e(A+B)e&1�2[A, B]

This proposition tells us that in a weak sense this BCH-formula remains
true for our fluctuation operators, whose commutator becomes a complex
number in the thermodynamic limit. Since we are studying fluctuations of
unbounded operators, the BCH-formula is only true in the GNS-representa-
tion of |. For fluctuations of bounded operators, the BCH-formula holds
in a much stronger sense, independent of the state (see ref. 15).

On the complex vectorspace V of complex linear combinations of
elements from (F, F), define a sesquilinear form ( } | } ) q by

( f1 , g1 | f2 , g2)q= lim
L � �

|(FL, q( f1 , g1)* FL, q( f2 , g2))

= 1
2 ( f1(q, 0)+ig1(q, 0))( f2(q, 0)+ig2(q, 0)) (34)

and extension to the whole of V by linearity.
This form is positive and satisfies the Cauchy�Schwarz inequality by

the positivity of | and the Cauchy�Schwarz inequality for the state |.
Separating the real and the imaginary part of the restriction of ( } | } ) q

to the real subspace (F, F) of V, i.e.,

( f1 , g1 | f2 , g2) q=sq( f1 , g1 | f2 , g2)+
i
2

_q( f1 , g1 | f2 , g2) (35)

defines a real bilinear positive symmetric form sq and a symplectic form _q .
(A form _ is called symplectic if _(x, y)=&_( y, x).)

The symplectic form _q satisfies

lim
L � �

[FL, q( f1 , g1), FL, q( f2 , g2)]=i_q( f1 , g1 | f2 , g2) (36)

where the limit is taken in the GNS-representation of |.
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The following proposition is the crucial Central Limit Theorem for the
operators FL, q( f, g).

Proposition 4 (Central Limit Theorem). For f, g # F, t # R,

lim
L � �

|(eitFL, q ( f, g))=e(&t2�2) sq ( f, g | f, g) (37)

Proof. Although a similar theorem could also be proven for tem-
perature states, we will only do it for the ground state, since that is really
all we need. In that case, using the quasi-freeness of the state and the fact
that all particles are condensed into the zero-energy state simplifies the
proof. The details can be found in Appendix B. K

The C*-algebra of the canonical commutation relations over (H, _),
with H a real linear space and _ a symplectic form, written as CCR(H, _),
is by definition a C*-algebra generated by elements [W( f ) : f # H] such
that

(i) W(& f )=W( f )*

(ii) W( f ) W(g)=e(i�2) _( f, g)W( f +g).

Condition (ii) tells us that W( f ) W(0)=W(0) W( f )=W( f ). Hence
W(0) is the unit of the algebra and it follows that W( f ) is a unitary for
every f. For an elaborate discussion of the CCR, we refer to ref. 22.

Proposition 5 (Reconstruction Theorem). The linear func-
tional

|~ q(Wq( f, g))=e&(1�2) sq ( f, g | f, g) (38)

defined on the algebra CCR((F, F), _q), is a quasi free state.
More explicitly, we have for all ( fi , gi ) # (F, F), i=1,..., n,

lim
L � �

|(eiFL, q ( f1 , g1) } } } eiFL, q ( fn , gn))=|~ q(Wq( f1 , g1) } } } Wq( fn , gn)) (39)

The state |~ q is regular and hence for every ( f, g) there exists a self-adjoint
Bosonic field 8q( f, g) in the GNS representation (H|~ q , ?|~ q , 0|~ q) such that

?|~ q(Wq ( f, g))=ei8q ( f, g) (40)

1137Goldstone Boson Normal Coordinates in Interacting Bose Gases



This implies that in the sense of the central limit (39), the local fluctuations
converge to the Bosonic fields associated with CCR((F, F), _q):

CLT lim
L � �

FL, q( f, g)=8q( f, g) (41)

Proof. See Appendix C. K

The following definitions now clearly make sense:

\q=8q(1, 0)=CLT lim
L � �

\L, q (42)

Aq=8q(0, 1)=CLT lim
L � �

AL, q (43)

In the same spirit as this central limit, we now define a limit q � 0 of the
operators 8q( f, g).

Define a sesquilinear form ( } | } ) on V by

( f1 , g1 | f2 , g2) = lim
q � 0

( f1 , g1 | f2 , g2) q (44)

and a real linear form s and a symmetric form _ in the obvious way:

s( f1 , g1 | f2 , g2)= lim
q � 0

sq( f1 , g1 | f2 , g2) (45)

_( f1 , g1 | f2 , g2)= lim
q � 0

_q( f1 , g1 | f2 , g2) (46)

We then get the limit (q � 0) result:

Proposition 6 (Reconstruction Theorem 2). The linear func-
tional

|~ (W( f, g))= lim
q � 0

|~ q(Wq( f, g))=e&(1�2) s( f, g | f, g) (47)

defined on the algebra CCR((F, F), _), is a quasi free state. More
explicitly, we have for all ( fi , gi ) # (F, F), i=1,..., n,

lim
q � 0

lim
L � �

|(eiFL, q ( f1 , g1) } } } eiFL, q ( fn , gn))=|~ (W( f1 , g1) } } } W(gn , gn)) (48)

The state |~ is regular and hence for every ( f, g) there exists a self-
adjoint Bosonic field 8( f, g) in the GNS representation (H|~ , ?|~ , 0|~ ) such
that

?|~ (W( f, g))=ei8( f, g) (49)

1138 Michoel and Verbeure



This implies that in this sense of the limit q � 0 (48), the fluctuations 8q

converge to the Bosonic fields associated with CCR(F, F), _):

8( f, g)= lim
q � 0

8q( f, g)=CLT lim
q � 0

lim
L � �

FL, q( f, g) (50)

Proof. This is just a matter of taking the limit q � 0 in the different
steps of the proof of the previous proposition. K

Specializing again to our original operators:

\~ = lim
q � 0

\q=8(1, 0)=CLT lim
q � 0

lim
L � �

\L, q (51)

A� = lim
q � 0

Aq=8(0, 1)=CLT lim
q � 0

lim
L � �

AL, q (52)

The algebra of macroscopic fluctuations CCR((F, F), _) is a coarse grained
one, i.e., different microscopic observables can have the same macroscopic
fluctuation operators. To describe this mathematically, introduce an equiv-
alence relation t on V by

( f1 , g1)t( f2 , g2) � ( f1& f2 , g1& g2 | f1& f2 , g1& g2)=0 (53)

Another way of stating the equivalence relation is of course

( f1 , g1)t( f2 , g2) � lim
q � 0

lim
L � �

|(FL, q( f1& f2 , g1& g2)2)=0 (54)

We then have the following result:

Proposition 7. For fi , gi # F, i=1, 2, the following are equiv-
alent:

(i) ( f1 , g1)t( f2 , g2)

(ii) 8( f1 , g1)=8( f2 , g2).

Proof. See Appendix D. K

A simple example: take f # F, and define Jf by (Jf )(q, 0)=&if (q, 0),
(Jf )(0, q)=if (0, q) and (Jf )(k, k$)=0 for all other values of k and k$. Then
( f, 0)t(0, Jf ) or in other words

CLT lim
q � 0

lim
L � �

\L, q( f )=CLT lim
q � 0

lim
L � �

AL, q(Jf ) (55)
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3.3. Dynamics of the Collective Goldstone Modes

In this section we will derive a dynamics on the level of the macro-
scopic fluctuations. This dynamics will of course be induced by the
microdynamics. Therefore we start with calculating

i[HL , \L, q]=
i

2(\0V )1�2 :
k

[(=k+q&=k) a*L, k+q aL, k

+(=k&q&=k) a*L, k&qaL, k]

=\L, q(=~ ) (56)

with =~ (k, k$)=i(=k&=k$). And also

i[HL , AL, q]=&
1
2 \=q+\ *

V
NL&+L++ (a*L, q+a*L, &q+aL, &q+aL, q)

&
i*

2V
(a*L, q+a*L, &q&(aL, &q+aL, q))

=&AL, q(=~ )&
1
2 \

*
V

NL&+L+ (a*L, q+a*L, &q+aL, &q+aL, q)

&
i*

2V
(a*L, q+a*L, &q&(aL, &q+aL, q)) (57)

The second and the third term on the r.h.s. converge to zero as L � � even
as operators in the GNS representation of |, so they are of no importance.
Remark that both limL � � |(\L, q(=~ )2) B =2

q and limL � � |(AL, q(=~ )2) B
=2

q , so it is natural to define a macroscopic dynamics by

i[H� , \~ ]=CLT lim
q � 0

lim
L � �

i _ 1
=q

HL , \L, q&
=CLT lim

q � 0
lim

L � �
\L, q \ 1

=q
=~ +

=CLT lim
q � 0

lim
L � �

AL, q=A�

where we have used Eq. (55) to go from the second line to the third.
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Analogously,

i[H� , A� ]=CLT lim
q � 0

lim
L � �

i _ 1
=q

HL , AL, q&
=&CLT lim

q � 0
lim

L � �
AL, q \ 1

=q
=~ +

=&CLT lim
q � 0

lim
L � �

\L, q

=&\~

again using (55).
Hence we have a canonical pair of observables (\~ , A� ), satisfying

[\~ , A� ]=i (58)

which dynamically decouples from the other degrees of freedom of the
system, such that:

i[H� , \~ ]=A� (59)

i[H� , A� ]=&\~ (60)

Hence H� is the harmonic oscillator Hamiltonian with frequency 1:

H� = 1
2 (\~ 2+A� 2) (61)

A quantum virial theorem is also satisfied, i.e.,

|~ (\~ 2)=|~ (A� 2) (62)

Remark that to go from the microdynamics HL to the macrodynamics H�
we had to rescale the Hamiltonian with =&1

q . This should actually be seen
as a rescaling of time

t � t~ =
t

=q

indicating that for small |q| the typical timescale of a (density) fluctuation
with wave length |q|&1 is of the order |q|&2, becoming infinite in the limit
q � 0.
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4. THE WEAKLY INTERACTING BOSE GAS

4.1. The Model and Equilibrium States

Our second model is a model of superfluidity, i.e., with an excitation
spectrum Eq linear in |q| for small q. Such a model is provided by ref. 23.
Its Hamiltonian is given by (we take &=3 throughout this section)

HL(c)=:
k

=k a*L, kaL, k+
1
2

:
k{0

v(k)(a*L, ka*L, &kc2+c� 2aL, &kaL, k)

+|c|2 :
k{0

v(k) a*L, k aL, k+
v(0)
2V

N 2
L&+L NL (63)

supplemented with

c= lim
L � �

|L(V &1�2aL, 0) (64)

where |L is the Gibbs state at some inverse temperature ; corresponding
to (63). This Hamiltonian is in fact the original Bogoliubov Hamiltonian
for a weakly interacting Bose gas, with an extra term (v(0)�2V ) N 2

L that
ensures the superstability of the model.

Again we take the thermodynamic limit under the constraint

lim
L � �

1
V

|L(NL)=\

It is proved in ref. 23 that there exist solutions |;=limL � � |L , for ; and
\ large enough, such that

lim
L

|;(V &1�2aL, 0)=c{0

and we will restrict ourself to these solutions.
To describe these equilibrium states we need a Bogoliubov transforma-

tion of the operators a>
L, k into new creation and annihilation operators

b>
L, k :

aL, k=bL, k cosh :k+b*L, &k sinh :k (65)

aL, &k=bL, &k cosh :k+b*L, k sinh :k (66)
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where

tanh 2:k=&
|c|2 v(k)

=k+|c| 2 v(k)
(67)

The limit Gibbs state has the same form as in the imperfect Bose gas: for
all local observables A,

|;(A)=
1

2? |
2?

0
|:

;(A) d: (68)

with

|:
;(ei(b( f )+b*( f )))=exp[&1

2 ( f, K$f )+2i |cf� (0)| cos :] (69)

and

(K$f@ )(k)=
1
2

coth \;Ek

2 + f� (k) (70)

with b>( f ) the corresponding Bogoliubov transformation of a>( f ) and

Ek=- =k(=k+2 |c| 2 v(k)) (71)

This is the famous Bogoliubov spectrum which for small k behaves like

Ek&\ |c| 2 v(0)
m +

1�2

|k|

The states |:
;(: # [0, 2?]) are the quasi-free extremal equilibrium state

components of |; with the property that

lim
L � �

|:
; \a*L, 0

V 1�2+=|c| e i: (72)

and as operators in the GNS-representation of |:
; , one has also

lim
L � �

a*L, 0

V 1�2=|c| ei: (73)

For more details we refer to ref. 23.
As in the imperfect Bose gas, we want to study the density and order

parameter fluctuations, FL, q(N ) and FL, q(A). However here, the Hamiltonian
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HL(c) (63) is a truncation of the full Hamiltonian (1), and due to this
truncation, HL(c) is no longer gauge invariant, i.e.,

[HL(c), NL]{0 (74)

The invariance which is left is

[HL(c), NL, 0]=0 (75)

with NL, 0=a*L, 0aL, 0 . This means that the spontaneously broken symmetry
accompanying the phase transition from c=0 to c{0 is not the gauge
symmetry generated by NL , but the symmetry generated by NL, 0 .

One example of the implications of this is the following. In the physics
literature, the quantity limL � �(FL, q(N ) FL, &q(N )) is known as the static
structure function, usually denoted S(q). It has been known for a long time,
both theoretically and experimentally, that at zero temperature this func-
tion behaves linearly in q for small q: S(q) B |q| (see, e.g., ref. 24). This
linear behaviour is essentially due to the fact that [UL , FL, q(N )]=0 so
that

([FL, q(N ), [HL , FL, &q(N )]]) B |q|2

However in our model

[HL(c), NL]{0

and very much related to this,

[UL(c), FL, q(N )]{0

and indeed it is easy to calculate that here limq � 0 S(q)=const{0.
Because of (74) and (75) we expect that this unphysical behaviour is

remedied when we replace the total density fluctuations FL, q(N ) by con-
densate density fluctuations FL, q(N0). However since NL, 0 can not be writ-
ten as the integral over some condensate density, it is impossible to define
FL, q(N0) as a usual fluctuation operator. What we want to show now is
that it is possible to find a fluctuation operator FL, q(N0) which behaves
mathematically like one expects for a fluctuation operator of the generator
of a spontaneously broken symmetry (i.e., we will derive a similar structure
as in the imperfect Bose gas) and moreover gives the correct physical
behaviour (like, e.g., limL � �(FL, q(N0) FL, &q(N0)) B |q| for small q).

In momentum space

FL, q(N )=
1

V 1�2 :
k

a*L, k+qaL, k (76)
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consists of two parts:

FL, q(N )=
1

V 1�2 (a*L, qaL, 0+a*L, 0aL, &q)+
1

V 1�2 :
k{0, k+q{0

a*L, k+qaL, k (77)

The first part only contains the ground state operators a>
L, 0 . It is clearly the

fluctuation of the zero-mode particle density, fluctuating to a fixed mode
and back to zero. The other part is the fluctuation of the excited modes
among each other. Therefore it is natural to define

FL, q(N0)=
1

V 1�2 (a*L, qaL, 0+a*L, 0 aL, &q) (78)

The truncation of FL, q(N ) to FL, q(N0) reminds very much the spirit behind
the truncation which led to the Bogoliubov approximation of the full
Hamiltonian. We can even see how closely those two are related. Take the
interaction part UL of the full Hamiltonian (1) and write it as in (10):

UL=
1
2

:
k{0

v(k) FL, k(N ) FL, &k(N )+
v(0)
2V

N 2
L&

1
2

,(0) NL

Truncate this expression by truncating the operators FL, k(N ) to FL, k(N0)
as described above, then:

UL=
1
2

:
k{0

v(k) FL, k(N0) FL, &k(N0)+
v(0)
2V

N 2
L&

1
2

,(0) NL

Write out:

1
2

:
k{0

v(k) FL, k(N0) FL, &k(N0)

=
1

2V
:

k{0

v(k)((aL, 0a*L, 0+a*L, 0aL, 0) a*L, k aL, k+aL, 0aL, 0a*L, k a*L, &k

+aL, 0a*L, 0 aL, &k aL, k)+
,(0)

2
NL, 0

As in ref. 23, replace the operators a>
L, 0 �V 1�2 by complex numbers |c| e\i:

in the first term of the interaction and preserve them as operators in the
remaining terms, then
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UL=
1
2

:
k{0

v(k) |c| 2 (e&2i:a*L, k a*L, &k+e2i:aL, &k aL, k)

+|c|2 :
k{0

v(k) a*L, k aL, k+
v(0)
2V

N 2
L&

1
2

,(0) NL+
,(0)

2
|c|2 V (79)

Apart from the term 1
2 ,(0) NL , which only leads to a shift in the chemical

potential, and an unimportant constant (,(0)�2) |c|2 V this is exactly the
Hamiltonian (63).

4.2. Collective Goldstone Modes

We consider again our system to be in one of the extremal equilibrium
states up, and without loss of generality we take :=0 (i.e., c real), and
denote this state by |; . As before let

FL, q(N0)=
1

V 1�2 (a*L, qaL, 0+a*L, 0aL, &q

FL, q(A)=
i

- 2 V 1�2 |
4

(a*(x)&a(x)) eiq } x dx=
i

- 2
(a*L, q&aL, &q)

and for ease of notation:

\0
L, q=

1

- 2c2
FL, q(N0), AL, q=FL, q(A)

These operators still satisfy the correct commutation relation

[\0
L, q , AL, &q]=

i

2 - c2V
(a*L, 0+aL, 0)

and by (73):

lim
L � �

[\0
L, q , AL, &q]=i (80)

More generally

lim
L � �

[\0
L, q , AL, &q$]=i$q, q$ (81)
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Proposition 8. We have for q{0:

(i)

lim
L � �

|;(\0
L, q\0

L, &q)=
=q

2Eq
coth \;Eq

2 +
(ii)

lim
L � �

|;(AL, qAL, &q)=
Eq

2=q
coth \;Eq

2 +
Proof. This is an easy calculation using the Bogoliubov transforma-

tion (65), (66), the explicit form of the state (69), property (73) and the fact
that

cosh 2:q=
=q+c2v(q)

Eq

sinh 2:q=&
c2v(q)

Eq

so that

(cosh :q+sinh :q)2=cosh 2:q+sinh 2:q=� =q

=q+2c2v(q)
(82)

(cosh :q&sinh :q)2=cosh 2:q&sinh 2:q=�=q+2c2v(q)
=k

(83)

This then gives the result via

lim
L � �

|;(\0
L, q\0

L, &q)

= 1
2 lim

L � �
|;((a*L, q+aL, &q)(a*L, &q+aL, q))

= 1
2 (cosh :q+sinh :q)2 lim

L � �
|;((b*L, q+bL, &q)(b*L, &q+bL, q)) K

coth(;Eq �2)
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For ;<� the small q-behaviour of these variances is

lim
L � �

|;(\0
L, q\0

L, &q)&const{0

lim
L � �

|;(AL, qAL, &q)&const_|q| &2

So again we have the phenomenon that at non-zero temperature it is
impossible to do a renormalization of \0

L, q and AL, q which gives both a
meaningful q � 0 limit for the variances and preserves a non-trivial com-
mutation relation.

Therefore we will restrict ourself from now on to the ground state
(denoted |). Contrary to the imperfect Bose gas, there remains a non-tri-
vial q-dependence in the ground state. This is because even at zero tem-
perature not all particles condense into the ground state. We have for
small q

lim
L � �

|(\0
L, q\0

L, &q) B |q|

lim
L � �

|;(AL, q AL, &q) B |q| &1

Remark that for the condensate density fluctuations this is the above men-
tioned linear behaviour.

We now redefine \0
L, q and AL, q to be self-adjoint and renormalized

in q, i.e.,

\0
L, q=

1
2(c2 |q| V )1�2 [(a*L, q+a*L, &q) aL, 0+a*L, 0(aL, q+aL, &q)] (84)

AL, q=i
|q| 1�2

2
[a*L, q+a*L, &q&(aL, q+aL, &q)] (85)

Hence we have still

lim
L � �

[\0
L, q , AL, q$]=i$q, q$ (86)

It is already interesting at this stage to remark that

lim
q � 0

lim
L � �

|;((\0
L, q)2)=

1
20

(87)

lim
q � 0

lim
L � �

|;(A2
L, q)=

0
2

(88)
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with

0= lim
q � 0

Eq |q|
=q

=(4mc2v(0))1�2 (89)

And hence again a virial type of theorem:

02 lim
q � 0

lim
L � �

|((\0
L, q)2)= lim

q � 0
lim

L � �
|(A2

L, q) (90)

The rest of this section is devoted to the rigorous mathematical treatment
of the existence of the fluctuation operators. Again at first reading, the
reader can immediately proceed to Section 4.3.

With all definitions and notations as above for the imperfect Bose gas,
we define again for f, g # F

\0
L, q( f )=

1
2cV 1�2 [ f (q, 0)(a*L, q+a*L, &q) aL, 0

+ f (0, q) a*L, 0(aL, q+aL, &q)] (91)

AL, q(g)=
i
2

[ g(q, 0)(a*L, q+a*L, &q)& g(0, q)(aL, q+aL, &q)] (92)

and

FL, q( f, g)=\0
L, q( f )+AL, q(g) (93)

Now we take immediately the limit limq � 0 limL � � rather than the two
limits separately as for the imperfect Bose gas.

Proposition 9. For f, g # F,

lim
q � 0

lim
L � �

|(FL, q( f, g)2)= lim
q � 0 {

=q+c2v(q)
2Eq

| f (q, 0)+ig(q, 0)|2

&
c2v(q)
2Eq

R[( f (q, 0)+ig(q, 0))2]= (94)

Proof. By explicit calculation. K

As above for the imperfect Bose gas, we are now in a position that we
have to give a mathematical meaning to the limit operators

lim
q � 0

lim
L � �

FL, q( f, g)
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From now on we restrict to those pairs of functions ( f, g) for which (94)
is well defined. If f is real, | f (q, 0)| should not diverge faster than |q|&1�2,
if f is imaginary, | f (q, 0)| should go to zero like |q|1�2. A real g should
satisfy the same condition as an imaginary f and vice versa. Alternatively,
we restrict F to those functions f which satisfy the above conditions and
then look at pairs ( f, Jg), with f, g in (the restricted) F and Jg defined as
(Jg)(q, 0)=&ig(q, 0), (Jg)(0, q)=ig(0, q). The rest of the mathematical
procedure is similar to the case treated above, with a different positive ses-
quilinear form:

( f1 , g1 | f2 , g2) = lim
q � 0

lim
L � �

|(FL, q( f1 , g1)* FL, q( f2 , g2))

=s( f1 , g1 | f2 , g2)+
i
2

_( f1 , g1 | f2 , g2)

As it should

lim
q � 0

lim
L � �

[FL, q( f1 , g1), FL, q( f2 , g2)]=i_( f1 , g1 | f2 , g2)

where the limit is taken in the GNS-representation of the equilibrium state |.
Remark that _ is the same as for the imperfect Bose gas. The proof of the
existence of the operators and their mathematical meaning goes formally
following the same arguments as for the imperfect Bose gas, using now the
explicit expression of the state (69) and (73). The basic ingredients are a
central limit theorem and a reconstruction theorem. We do not repeat the
details of these theorems, which can easily be established by the interested
reader.

Denote

8( f, g)=CLT lim
q � 0

lim
L � �

FL, q( f, g) (95)

the Bosonic field associated with CCR((F, JF), _), and specialize to our
original operators:

\~ 0=8( |q| &1�2, 0)=CLT lim
q � 0

lim
L � �

\0
L, q (96)

A� =8(0, |q| 1�2)=CLT lim
q � 0

lim
L � �

AL, q (97)

adopting the notation ( f, g)=( f (q, 0), g(q, 0)).
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The equivalence property also remains true in this case of course, i.e.,

8( f1 , g1)=8( f2 , g2) � ( f1 , g1)t( f2 , g2)

� lim
q � 0

lim
L � �

|(FL, q( f1& f2 , g1& g2)2)=0

in particular

CLT lim
q � 0

lim
L � �

\0
L, q( f )=CLT lim

q � 0
lim

L � �
AL, q(Jf ) (98)

4.3. Dynamics of the Collective Goldstone Modes

We will now show that also for the weakly interacting Bose gas the
fluctuations of the generator and of the order parameter of the SSB
decouple dynamically from the other degrees of freedom of the system, and
form an independent harmonic oscillator system.

At the local level, we have

i[HL(c), \0
L, q]

=
i=q

2(c2 |q| V )1�2 [(a*L, q+a*L, &q) aL, 0&a*L, 0(aL, q+aL, &q)]

+
ic2v(q)

2(c2 |q| V )1�2 [(a*L, q+a*L, &q)(aL, 0&a*L, 0)

+(aL, 0+a*L, 0)(aL, q+aL, &q)]

=\0
L, q \ i=q

|q| 1�2++
ic2v(q)

2(c2 |q| V )1�2 [(a*L, q+a*L, &q)(aL, 0&a*L, 0)

+(aL, 0&a*L, 0)(aL, q+aL, &q)] (99)

Since the operators V &1�2(aL, 0&a*L, 0) converge to 0 in the GNS represen-
tation of |, we only have to take into account the term \0

L, q(i=q �|q|1�2).
This is what we mentioned earlier, the interaction part of HL(c) commutes
with the condensate density fluctuations as one expects physically, but only
in the thermodynamic limit. Also:

&i[HL(c), AL, q]=AL, q(&i(=q+2c2v(q)) |q|1�2) (100)
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As in the imperfect Bose gas, we define a macroscopic dynamics by first
renormalizing the Hamiltonian with its spectrum, and then taking the limit.
CLT limq � 0 limL � � of the commutators,

i[H� , \~ 0]=CLT lim
q � 0

lim
L � �

i _ 1
Eq

HL(c), \0
L, q&

=CLT lim
q � 0

lim
L � �

\0
L, q \ i=q

Eq |q| 1�2+
=CLT lim

q � 0
lim

L � �
AL, q \ =q

Eq |q|
|q| 1�2+=

1
0

A� (101)

where we used the equivalence relation. Remember that AL, q=AL, q( |q|1�2)
and that 0 is given in (89),

&i[H� , A� ]=CLT lim
q � 0

lim
L � �

&i _ 1
Eq

HL(c), AL, q&
=CLT lim

q � 0
lim

L � �
AL, q \&i(=q+2c2v(q)) |q|1�2

Eq +
=CLT lim

q � 0
lim

L � �
\0

L, q \Eq |q|
=q

1
|q|1�2+=0\~ 0 (102)

Again remember \0
L, q=\0

L, q( |q|&1�2).
Hence we found a canonical pair (\~ 0, A� ), satisfying

[\~ 0, A� ]=i (103)

dynamically decoupling from the other degrees of freedom of the system,
with the dynamics given by

i[H� , \~ 0]=
1
0

A� (104)

&i[H� , A� ]=0\~ 0 (105)

The solution of these equations is the harmonic oscillator with energy 0:

H� =
1

20
(02(\~ 0)2+A� 2) (106)
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The state |~ is an equilibrium ground state for the Hamiltonian H� satisfying
the following virial theorem

02|~ ((\~ 0)2)=|(A� 2) (107)

This finishes the Anderson programme(13, 14) about the construction of the
canonical Goldstone coordinates.

Remark that also in this case we have done a rescaling of time

t � t~ =
t

Eq

when going from the microdynamics HL(c) to the macrodynamics H� ,
indicating again that the typical timescale of the fluctuations becomes
infinite as q � 0, this time with a rate |q|&1, as a consequence of the fact
that Eq B |q| for small q.

APPENDIX A. PROOF OF PROPOSITION 3

In this proof we make use of the following general formula

eit(x+ y)=eitx+|
t

0
dseisxiyei(t&s)(x+ y) (108)

where x, y are self-adjoint operators. From this formula, one deduces use-
ful properties like for example

[eix, z]=i |
1

0
dteitx[x, z] e i(1&t) x (109)

&[eix, z]&�&[x, z]& (110)

where x, y are self-adjoint, z arbitrary and & }& is some norm.
Denote Fi=FL, q( fi , gi ), i=1, 2. We need to prove

lim
L � �

&eiF1e iF2&ei(F1+F2)e&1�2[F1 , F2]&2
|=0

One has

&eiF1eiF2&ei(F1+F2)e&1�2[F1 , F2]&2
|

=2&|(e&iF2e&iF1ei(F1+F2)e&1�2[F1 , F2])&|(e1�2[F1 , F2]e&i(F1+F2)eiF1eiF2)
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Hence it is sufficient to show

lim
L � �

|(e&iF2e&iF1ei(F1+F2)e&1�2[F1 , F2])=1

Define a function f (t) by

f (t)=|(e&iF2e&itF1ei(tF1+F2)e&t�2[F1 , F2])&1

We have to show

lim
L � �

| f (1)|=0

By Taylor's theorem, there exists some t # [0, 1] such that

f (1)= f (0)+ f $(t)= f $(t)

since f (0)=0. Let us calculate f $(t) using (108),

d
dt

ei(tF1+F2)=i |
1

0
dseis(tF1+F2)F1ei(1&s)(tF1+F2)

Hence

f $(t)=| \&ie&iF2e&itF1F1 ei(tF1+F2)e&t�2[F1 , F2]

+ie&iF2e&itF1 |
1

0
dse is(tF1+F2)F1ei(1&s)(tF1+F2)e&t�2[F1 , F2]

& 1
2 e&iF2e&itF1ei(tF1+F2)[F1 , F2] e&t�2[F1 , F2]+

=| \ie&iF2eitF1 |
1

0
ds[[eis(tF1+F2), F1] ei(1&s)(tF1+F2)

&isei(tF1+F2)[F2 , F1]] e&t�2[F1 , F2]+
Denote

A=|
1

0
ds[[eis(tF1+F2), F1] ei(1&s)(tF1+F2)&isei(tF1+F2)[F2 , F1]]

f $(t)=|(ie&iF2e&itF1Ae&t�2[F1 , F2])

=|(ie&iF2e&itF1e&t�2[F1 , F2]A+ie&iF2e&itF1[A, e&t�2[F1 , F2]])
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then

| f $(t)|�||(e&iF2e&itF1e&t�2[F1 , F2]A)|+||(e&iF2e&itF1[A, e&t�2[F1 , F2]])|

(111)

The first part is estimated as follows:

||(e&iF2e&itF1e&t�2[F1 , F2]A)|�&A&|

by the Cauchy�Schwarz inequality. We now make an estimation of &A&| :

&A&|="|
1

0
ds[[e is(tF1+F2), F1] ei(1&s)(tF1+F2)&isei(tF1+F2)[F2 , F1]]"|

�|
1

0
ds &[eis(tF1+F2), F1] ei(1&s)(tF1+F2)&ise i(tF1+F2)[F2 , F1]&|

=|
1

0
ds "|

1

0
dreirs(tF1+F2)is[F2 , F1] e i(1&r) s(tF1+F2)ei(1&s)(tF1+F2)

&ise i(tF1+F2)[F2 , F1]"|

=|
1

0
ds "|

1

0
dreirs(tF1+F2)is[F2 , F1] e i(1&rs) s(tF1+F2)

&ise i(tF1+F2)[F2 , F1]"|

=|
1

0
ds "|

1

0
driseirs(tF1+F2)[[F2 , F1], ei(1&rs) s(tF1+F2)]"|

�|
1

0
ds |

1

0
drs &[[F2 , F1], ei(1&rs) s(tF1+F2)]&|

�|
1

0
ds |

1

0
drs(1&rs) &[[F2 , F1], tF1+F2]&|

= 1
3 &[[F2 , F1], tF1+F2]&|

where we have used (109) in the third step and (110) in the fifth. But
because the commutator [F2 , F1] converges to a complex number in the
state |, it can be calculated explicitly that the commutator [[F2 , F1],
tF1+F2] converges to 0. By a similar argument it can also be shown that
the second part of (111) converges to 0, thus proving Proposition 3. K
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APPENDIX B. PROOF OF PROPOSITION 4

Take some arbitrary FL, q( f, g) and first of all remark that it can be
written as

FL, q( f, g)=Bq*+Bq

where Bq*=B&q and [Bq*, Bq]=0 (we have only written the q-dependence
explicitly, all other dependencies are implicit). One can for instance take

Bq=
1

2(\0V )1�2 :
k

f (k+q, k) a*L, k+qaL, k+
i
2

(g(q, 0) a*L, q& g(0, q) aL, &q)

Bq itself can be decomposed into

Bq=B0
q+B� q (112)

with

B0
q=

1
2(\0 V )1�2 ( f (q, 0) a*L, qaL, 0+ f (0, q) a*L, 0aL, &q)

+
i
2

(g(q, 0) a*L, q& g(0, q) aL, &q)

=
1
2 _\ f (q, 0)

aL, 0

(\0V )1�2+ig(q, 0)+ a*L, q

+\ f (0, q)
a*L, 0

(\0V )1�2&ig(0, q)+ aL, &q&
We want to show now that the part (B0

q)*+B0
q is the only part of

FL, q( f, g) which gives a non-zero contribution to the expectation value on
the l.h.s of (37). Expanding the exponential in a power series, we have to
calculate expectation values of the type

|((Bq*+Bq)m)

This is obviously zero for m odd, and for m=2n even, the only non-zero
terms are those with a number of starred operators equal to unstarred.
Because of the commutation [Bq*, Bq], these are all equal to

|((Bq*)n Bn
q)
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Using the decomposition (112) this becomes

|((Bq*)n Bn
q)=|(((B0

q)*)n (B0
q)n)+other terms

We now prove that these ``other terms'' are all necessarily zero because we
are working in the ground state. Using the commutation of the (B0

q)> with
the (B� q)> these terms are all of the form

|((B0
q)*) i (B0

q) j (B� q*)n&i (B� q)n& j ) (113)

We have

(B� q)n& j=
1

(4\0 V )(n& j)�2 :
k1 ,..., kn&j ; &q{kl{0

f (k1+q, k1) } } } f (kn& j+q, kn& j )

_a*L, k1+qaL, k1
} } } a*L, kn&j+q aL, kn&j

Using this in (113) one gets sums of expectation values which can be com-
puted by using the quasi-freeness of the state |, i.e., each expectation is a
sum of products of one-and two-point correlations, respectively |(a>

L, k)
and

|T (a>
L, k a>

L, k$)=|(a>
L, k a>

L, k$)&|(a>
L, k) |(a>

L, k$)

of which only the following are non-zero:

|(a>
L, 0)=- \0V

|T (aL, k a*L, k)=|(aL, ka*L, k)=1, k{0

We show now that each of the expectations to be computed is zero. Take
an arbitrary term. First of all, take some aL, 0a*L, k term from one of the
B0

q 's. It can only give a non-zero contribution if it is combined with an
a*L, 0aL, q term from one of the (B0

q)*'s, so at least we need i= j. A term
a>

L, \q from any of the B0
q 's or (B0

q)*'s can never be combined with a term
coming from the (B� q)> 's because this would give rise to an expectation of
an odd number of creation and annihilation operators, all with a non-zero
index, which is zero. Hence in the quasi-free decomposition, the operators
coming from ((B0

q)*) j (B0
q) j and the operators coming from (B� q*)n& j

(B� q)n& j completely decouple from each other. But a typical factor arising
from (B� q*)n& j (B� q)n& j is

|(a*L, k1+qaL, k1
} } } a*L, kn&j+qaL, kn&j

a*L, l1&qaL, l1
} } } a*L, ln&j+q aL, ln&j

)
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which is zero because it always contains at least one factor |(a*L, kaL, k),
k{0.

Hence we proved that indeed

|((Bq*)n Bn
q)=|(((B0

q)*)n (B0
q)n)

or in other words

lim
L � �

|(eitFL, q ( f, g))= lim
L � �

|(eitF 0
L, q ( f, g)) (114)

where

F 0
L, q( f, g)=\0

L, q( f )+AL, q(g)

with

\0
L, q( f )=

1
2 _

f (q, 0)
(\0V )1�2 aL, 0(a*L, q+a*L, &q)+

f (0, q)
(\0V )1�2 a*L, 0(aL, q+aL, &q)&

Hence

F 0
L, q( f, g)=

1
2 {_ f (q, 0)

aL, 0

(\0V )1�2+ig(q, 0)& (a*L, q+a*L, &q)

+_ f (q, 0)
aL, 0

(\0V )1�2&ig(q, 0)& (aL, q+aL, &q)=
Using (18) one gets

lim
L � �

|(eitF 0
L, q ( f, g))

= lim
L � �

|(e(it�2)[[ f (q, 0)+ig(q, 0)](a*L, q+a*L, &q)+[ f (q, 0)+ig(q, 0)](aL, q+aL, &q)])

(115)

With the explicit expression of the state (15), the r.h.s. of (115) can easily
be computed, and together with (114) one gets (37). K

APPENDIX C. PROOF OF PROPOSITION 5

We prove (39) by induction on n # N0 . The basis of the induction is
the Central Limit Theorem, Proposition 4.
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To prove the induction step, assume that (39) holds for some n # N0

and fix ( fi , g i ) # (F, F), i=1,..., n+1.
For convenience write

eiFL, q ( f1 , g1) } } } e iFL, q ( fn&1 , gn&1)#WL, q

and

FL, q( fi , g i )#F i
L, q

By the Cauchy�Schwarz inequality and the BCH-formula (33)

lim
L � �

||(WL, q[eiF n
L, qeiFL, q

n+1
&ei(F n

L, q+F L, q
n+1)e&1�2[F n

L, q , FL, q
n+1)]])|

� lim
L � �

&eiF n
L, qeiFL, q

n+1
&ei(F n

L, q+F L, q
n+1)e&1�2[F n

L, q , F L, q
n+1)]&|=0

Use the Cauchy�Schwarz inequality again to derive that

||(WL, q ei(F n
L, q+F L, q

n+1)e&1�2[F n
L, q , FL, q

n+1)])

&|(WL, qei(F n
L, q+FL, q

n+1)) e&(i�2) _q (n | n+1)| 2

=||(WL, qei(F n
L, q+F L, q

n+1)[e&1�2[F n
L, q , F L, q

n+1)]&e&(i�2) _q (n | n+1) 1])|2

�|([e1�2[F n
L, q , F L, q

n+1)]&e(i�2) _q (n | n+1) 1]

_[e&1�2[F n
L, q , FL, q

n+1)]&e&(i�2) _q (n | n+1)1])

=2&|(e1�2[F n
L, q , F L, q

n+1)]) e&(i�2) _q(n | n+1)

&|(e&1�2[F n
L, q , F L, q

n+1)]) e(i�2) _q (n | n+1)

This expression converges to zero as L � � because of the convergence of
the commutator. Combining the induction hypothesis and the above result,
one finds that

lim
L � �

|(WL, qeiF n
L, qeiFL, q

n+1
)

= lim
L � �

|(WL, qe i(F n
L, q+FL, q

n+1)) e&(i�2) _q (n | n+1)

=|~ q(Wq(1) } } } [Wq(n)+Wn(n+1)]) e&(i�2) _q (n | n+1)

=|~ q(Wq(1) } } } Wq(n) Wq(n+1))

The last equality results from the CCR algebraic structure of
CCR((F, F), _q).
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The only thing left to prove is positivity. Take fi , gi # F, i=1, 2 and
use the definitions of _q and sq along with the Cauchy�Schwarz inequality
to derive that

1
4 |_q( f1 , g1 | f2 , g2)|2

�|( f1 , g1 | f2 , g2) q |2

�( f1 , g1 | f1 , g1) q ( f2 , g2 | f2 , g2) q

�sq( f1 , g1 | f1 , g1) sq( f2 , g2 | f2 , g2)

APPENDIX D. PROOF OF PROPOSITION 7

Denote

W( fi , gi )#Wi

Suppose first that (ii) is satisfied, then

[?|~ (W1), ?|~ (W2)]=0

and hence

_(1 | 2)=0

Further

1=|~ (W1W 2*)=|~ (W1W&2)

=|~ (W1&2)=e&1�2s(1&2 | 1&2)

where we used the notation ( f1& f2 , g1& g2) � 1&2. By the definition of
s this means (1&2 | 1&2) =0, proving (i).

Conversely, Suppose ( f1 , g1)t( f2 , g2) then

1
4 |_(1&2 | x)| 2�(1&2 | 1&2)(x | x)

implies that _(1&2 | x)=0 for all x, where x denotes an arbitrary element of
(F, F), i.e., ?|~ (W1&2) commutes with all elements of ?|~ (CCR((F, F), _))
#M, or ?|~ (W1&2) belongs to the commutant M$ of M. Also

&(?|~ (W1&2)1) 0|~ &2

=|~ ((W1&2&1)* (W1&2&1))=2&|((W1&2)&|((W2&1)=0
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As 0|~ is cyclic for M, it is separating for M$. Hence

?|~ (W1&2)=1 or ?|~ (W1)=?|~ (W2)
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